This course teaches the safe operation of manual machining equipment through structured hands-on activities. A significant portion of the course is dedicated to learning subtractive manufacturing, the industrial standard for the mass manufacture of products around the world. The skills learned in this course can be applied to fabricate durable components for design projects, research equipment, and extracurricular activities.
ENGR 221 - Intro to CNC Machining (Starting Spring 2026)
This course teaches the safe operation of CNC machining equipment through structured hands-on activities. A significant portion of the course is dedicated to learning CAM software for fabrication of 2D and 3D parts. The skills learned in this course can be applied to fabricate durable components for design projects, research equipment, and extracurricular activities.
This course teaches the safe operation of woodworking equipment, including band saw, table saw, drill press, sander, chop saw, and miter saw through structured hands-on activities. A significant portion of the course is dedicated to learning optimal workflow, tool selection, and equipment selection for building structures. Homework assignments are important for reinforcement of skills learned, and are flexible for students to complete guided or self-directed projects.
This course teaches the safe operation of a CNC router machine through structured hands-on activities. A significant portion of the course is dedicated to software for fabrication of 2D and 3D parts. Homework assignments are important for reinforcement of skills learned and are flexible for students to complete guided or self-directed projects.
This course teaches the fundamental principles and skills needed to perform successful manual welding operations. Basic background information on metallurgy, weld types, welding technologies, and welding calculations are presented and studied. A portion of the instruction covers welding theory and workflow development while the remaining course time is dedicated to teaching and learning physical welding skills. Students must demonstrate welding proficiency during laboratory sessions and assessments to complete course requirements. Homework assignments are important for reinforcement of skills learned and are flexible for students to complete guided or self-directed projects.
This course introduces students to the fundamental skills, equipment, safety procedures, and theory required to prototype and test basic mechanical and electrical systems as part of the engineering and product design process. Students learn basic prototyping skills starting with hand tools and moving to computer-controlled cutting, shaping, and measurement equipment such as 3D printers, water jets, lasers, CMM’s, mills, and lathes. Students learn to use software to design components, develop and interpret prints, and program fabrication and inspection machinery. Entrepreneurial concepts, budget, and economic factors associated with prototyping are discussed and examined. Laboratory exercises require students to design, model, fabricate, and validate components and systems. The course concludes with a final project requiring students to design and produce a physical project in the NJIT Makerspace.